Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511225

RESUMO

Insulin resistance is a crucial factor in the development of type 2 diabetes mellitus (T2DM) and other metabolic disorders. Skeletal muscle, the body's largest insulin-responsive tissue, plays a significant role in the pathogenesis of T2DM due to defects in insulin signaling. Recently, there has been growing evidence that macrophages, immune cells essential for tissue homeostasis and injury response, also contribute to the development of skeletal muscle insulin resistance. This review aims to summarize the current understanding of the role of macrophages in skeletal muscle insulin resistance. Firstly, it provides an overview of the different macrophage populations present in skeletal muscle and their specific functions in the development of insulin resistance. Secondly, it examines the underlying mechanisms by which macrophages promote or alleviate insulin resistance in skeletal muscle, including inflammation, oxidative stress, and altered metabolism. Lastly, the review discusses potential therapeutic strategies targeting macrophages to improve skeletal muscle insulin sensitivity and metabolic health.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Músculo Esquelético/metabolismo
2.
Ann Hum Genet ; 83(5): 355-360, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30937899

RESUMO

BACKGROUND: The MC3R haplotype C17A + G241A, which encodes a partially inactivated receptor, has high prevalence in individuals of predominately African ancestry. In pediatric cohorts, homozygosity for this common variant has been associated with obesity, reduced lean mass, and greater fasting insulin. However, metabolic and body composition measures have not been well studied in adults with this haplotype. METHODS: A convenience sample of 237 healthy African-American adult volunteers was studied. TaqMan assays were used to genotype MC3R variants. Labs were drawn in the morning in the fasted state. Body composition data was obtained via dual-energy X-ray absorptiometry. An analysis of covariance was used to examine the associations of genotype with metabolic and body composition measures controlling for age and sex. RESULTS: Individuals homozygous for the MC3R C17A + G241A haplotype had significantly greater body mass index, fat mass, fat mass percentage, and C-reactive protein, with reduced lean mass percentage as compared to heterozygous and wild-type participants (all ps < 0.05); fasting insulin was marginally nonsignificant between groups (p = 0.053). After adjusting for fat mass, laboratory differences no longer remained significant. CONCLUSIONS: Homozygosity for MC3R C17A + G241A is associated with increased adiposity in African-American adults. Further studies are needed to elucidate the mechanisms behind these associations.


Assuntos
Adiposidade/genética , Negro ou Afro-Americano/genética , Inflamação/genética , Receptor Tipo 3 de Melanocortina/genética , Adulto , Índice de Massa Corporal , Feminino , Haplótipos , Humanos , Masculino , Adulto Jovem
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(10 Pt A): 2468-2476, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28363697

RESUMO

Inactivating mutations in the melanocortin 3 receptor (Mc3r) have been described as causing obesity in mice, but the physiologic effects of MC3R mutations in humans have been less clear. Here we review the MC3R polymorphisms and mutations identified in humans, and the in vitro, murine, and human cohort studies examining their putative effects. Some, but not all, studies suggest that the common human MC3R variant T6K+V81I, as well as several other rare, function-altering mutations, are associated with greater adiposity and hyperleptinemia with altered energy partitioning. In vitro, the T6K+V81I variant appears to decrease MC3R expression and therefore cAMP generation in response to ligand binding. Knockin mouse studies confirm that the T6K+V81I variant increases feeding efficiency and the avidity with which adipocytes derived from bone or adipose tissue stem cells store triglycerides. Other MC3R mutations occur too infrequently in the human population to make definitive conclusions regarding their clinical effects. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.


Assuntos
Mutação , Obesidade/genética , Polimorfismo Genético , Receptor Tipo 3 de Melanocortina/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Predisposição Genética para Doença , Humanos , Camundongos , Obesidade/patologia
4.
Hypertension ; 63(3): 542-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366083

RESUMO

Autonomic nervous system dysfunction, exaggerated inflammation, and impaired vascular repair are all hallmarks of hypertension. Considering that bone marrow (BM) is a major source of the inflammatory cells (ICs) and endothelial progenitor cells (EPCs), we hypothesized that impaired BM-autonomic nervous system interaction contributes to dysfunctional BM activity in hypertension. In the spontaneously hypertensive rat (SHR), we observed a >30% increase in BM and blood ICs (CD4.8(+)) and a >50% decrease in EPCs (CD90(+).CD4.5.8(-)) when compared with the normotensive Wistar-Kyoto rat. Increased tyrosine hydroxylase (70%) and norepinephrine (160%) and decreased choline acetyl transferase (30%) and acetylcholine esterase (55%) indicated imbalanced autonomic nervous system in SHR BM. In Wistar-Kyoto rat, night time-associated elevation in sympathetic nerve activity (50%) and BM norepinephrine (41%) was associated with increased ICs (50%) and decreased EPCs (350%) although BM sympathetic denervation decreased ICs (25%) and increased EPCs (40%). In contrast, these effects were blunted in SHR, possibly because of chronic downregulation of BM adrenergic receptor α2a (by 50%-80%) and ß2 (30%-45%). Application of norepinephrine resulted in increased BM IC activation/release, which was prevented by preadministration of acetylcholine. Electrophysiological recordings of femoral sympathetic nerve activity showed a more robust femoral sympathetic nerve activity in SHR when compared with Wistar-Kyoto rat, peaking earlier in the respiratory cycle, indicative of increased sympathetic tone. Finally, manganese-enhanced MRI demonstrated that presympathetic neuronal activation in SHR was associated with an accelerated retrograde transport of the green fluorescent protein-labeled pseudorabies virus from the BM. These observations demonstrate that a dysfunctional BM autonomic nervous system is associated with imbalanced EPCs and ICs in hypertension.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Pressão Sanguínea/fisiologia , Medula Óssea/inervação , Hipertensão/fisiopatologia , Animais , Medula Óssea/fisiopatologia , Modelos Animais de Doenças , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
5.
Hypertension ; 60(5): 1316-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23045460

RESUMO

Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Medula Óssea/fisiopatologia , Encéfalo/fisiopatologia , Hipertensão/fisiopatologia , Angiotensina II , Animais , Animais Recém-Nascidos , Sistema Nervoso Autônomo/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Infusões Intraventriculares , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley
6.
Am J Respir Crit Care Med ; 182(8): 1065-72, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20581171

RESUMO

RATIONALE: An activated vasoconstrictive, proliferative, and fibrotic axis of the renin angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin [Ang]II/AngII type 1 receptor) has been implicated in the pathophysiology of pulmonary fibrosis (PF) and pulmonary hypertension (PH). The recent discovery of a counterregulatory axis of the renin angiotensin system composed of ACE2/Ang-(1-7)/Mas has led us to examine the role of this vasoprotective axis on such disorders. OBJECTIVES: We hypothesized that Ang-(1-7) treatment would exert protective effects against PF and PH. METHODS: Lentiviral packaged Ang-(1-7) fusion gene or ACE2 cDNA was intratracheally administered into the lungs of male Sprague Dawley rats. Two weeks after gene transfer, animals received bleomycin (2.5 mg/kg). In a subsequent study, animals were administered monocrotaline (MCT, 50 mg/kg). MEASUREMENTS AND MAIN RESULTS: In the PF study, bleomycin administration resulted in a significant increase in right ventricular systolic pressure, which was associated with the development of right ventricular hypertrophy. The lungs of these animals also exhibited excessive collagen deposition, decreased expression of ACE and ACE2, increased mRNA levels for transforming growth factor ß and other proinflammatory cytokines, and increased protein levels of the AT1R. Overexpression of Ang-(1-7) significantly prevented all the above-mentioned pathophysiological conditions. Similar protective effects were also obtained with ACE2 overexpression. In the PH study, rats injected with MCT developed elevated right ventricular systolic pressure, right ventricular hypertrophy, right ventricular fibrosis, and pulmonary vascular remodeling, all of which were attenuated by Ang-(1-7) overexpression. Blockade of the Mas receptor abolished the beneficial effects of Ang-(1-7) against MCT-induced PH. CONCLUSIONS: Our observations demonstrate a cardiopulmonary protective role for the ACE2/Ang-(1-7)/Mas axis in the treatment of lung disorders.


Assuntos
Angiotensina I/genética , Terapia Genética , Hipertensão Pulmonar/prevenção & controle , Fragmentos de Peptídeos/genética , Fibrose Pulmonar/prevenção & controle , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Bleomicina , Hipertensão Pulmonar/patologia , Masculino , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução Genética
7.
Hypertension ; 56(2): 297-303, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20547972

RESUMO

Accumulating evidence indicates a key role of inflammation in hypertension and cardiovascular disorders. However, the role of inflammatory processes in neurogenic hypertension remains to be determined. Thus, our objective in the present study was to test the hypothesis that activation of microglial cells and the generation of proinflammatory cytokines in the paraventricular nucleus (PVN) contribute to neurogenic hypertension. Intracerebroventricular infusion of minocycline, an anti-inflammatory antibiotic, caused a significant attenuation of mean arterial pressure, cardiac hypertrophy, and plasma norepinephrine induced by chronic angiotensin II infusion. This was associated with decreases in the numbers of activated microglia and mRNAs for interleukin (IL) 1beta, IL-6, and tumor necrosis factor-alpha, and an increase in the mRNA for IL-10 in the PVN. Overexpression of IL-10 induced by recombinant adenoassociated virus-mediated gene transfer in the PVN mimicked the antihypertensive effects of minocycline. Furthermore, acute application of a proinflammatory cytokine, IL-1beta, into the left ventricle or the PVN in normal rats resulted in a significant increase in mean arterial pressure. Collectively, this indicates that angiotensin II induced hypertension involves activation of microglia and increases in proinflammatory cytokines in the PVN. These data have significant implications on the development of innovative therapeutic strategies for the control of neurogenic hypertension.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Inflamação/fisiopatologia , Microglia/metabolismo , Angiotensina II/antagonistas & inibidores , Angiotensina II/farmacologia , Animais , Antibacterianos/farmacologia , Pressão Sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Citocinas/sangue , Citocinas/genética , Técnicas de Transferência de Genes , Frequência Cardíaca , Imuno-Histoquímica , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...